WR vs CB Week 1

I must share a major disclaimer before jumping into to this: Pass Coverage performance as a whole, regardless of what metric you use, is by far the most volatile of datapoints. Hence, ANY model built to predict outcomes based on coverage ability (using the past to predict the future) must be taken with a hefty appetite for variance. This is said in the most macro of senses. That is, compared to other advanced statistics coverage data tend to be more elastic. As Pro Football Focus said in a relevant study in 2019:

“Coverage players who grade well one year are more likely to grade well the next year than those who do not, but the uncertainty is substantial. Second, and likely more importantly, your defensive success is largely a function of the offenses (and, more specifically, the quarterbacks) your team faces – something it has little control over even when sound personnel and scheme decisions are made.”

Essentially, how well a player is at covering a receiver is NOT as predictive game-over-game or even season-over-season, as other player performance metrics like pass pressure rate, broken/missed tackle rate, etc. Not to mention, figuring out WHO will cover a player, and how often is riddled with subjectivity. With that said, despite the fact it seems I’m telling you to stop reading, there is still some insight to glean from a properly calibrated model, WHEN YOU CONSIDER IT AT THE MARGIN (i.e. think when you choose a starter and have a 50/50 decision between WRs). Each week Fantasy Pros plans to unveil our WR vs CB piece, utilizing our friends at PFF’s database, while applying our own model to determine marginal advantages for WRs in a given week for Fantasy Football, leveraging what we know to be predictive triggers between players.

As mentioned, the toughest part in creating a model that predicts WR performance based on the opposing “cover man” is NOT knowing strength/weakness of the opponent, but frankly who the WR is most likely to lineup against. Given the different coverage schemes, presnap motion and potential shadow situations, one particular WR may be covered by 5-8 different DB/LB/Ss in a any given game. Hence weighting the likely proportion of snaps vs. a particular defender is crucial. You will see this as a hallmark of the model throughout.

Without further ado, we present to you the 2021 WR vs CB Week 1 Matchup Model.

*MIND YOU this is last years data, so the model should be given another “layer” of risk tolerance, yet will be MUCH more reliable once we have 2-4 weeks of FRESH data to input

Net Performance Advantage Model

SnapsWt.ed Net PPRR40 Adv.HT Adv.nPFFwted Total
Demetric Felton23.410.50.00-1.1521.9
Christian Kirk46.916.3-0.01-0.1012.1
James Proche24.05.60.000.0011.4
Tyler Boyd56.416.80.033.6611.4
Cooper Kupp62.426.4-0.132.3111.2
Hunter Renfrow51.218.1-0.02-0.5110.1
Randall Cobb38.311.40.12-1.519.3
Braxton Berrios29.89.70.000.008.8
Davante Adams58.225.1-0.040.008.2
DeVonta Smith57.721.90.000.007.9
D.K. Metcalf50.918.50.032.197.6
A.J. Brown51.924.60.000.037.6
Deebo Samuel55.720.50.00-0.637.4
Chris Godwin52.218.6-0.031.947.0
Tyler Lockett54.319.10.00-0.146.4
Amari Cooper52.617.3-0.010.006.3
Mike Williams54.417.70.000.696.0
Justin Jefferson56.021.00.030.635.7
Kenny Golladay42.710.1-0.012.385.6
Ja’Marr Chase59.022.30.000.005.4
Tee Higgins53.918.30.000.005.1
Robert Woods58.917.4-0.051.305.1
Terry McLaurin55.117.20.010.004.9
Russell Gage49.817.50.00-0.444.8
Elijah Moore39.412.30.000.004.6
Brandon Aiyuk56.215.5-0.011.334.6
Mecole Hardman51.015.80.11-1.094.5
Brandin Cooks51.119.60.08-2.294.5
Mike Evans55.319.5-0.043.634.4
Michael Pittman Jr.56.716.5-0.012.274.2
Isaiah McKenzie23.46.80.10-3.034.0
Stefon Diggs56.219.00.00-0.203.6
Kadarius Toney31.29.30.00-0.313.4
Jakobi Meyers55.015.2-0.010.233.4
CeeDee Lamb54.016.7-0.042.563.3
Chris Moore25.59.7-0.02-0.183.2
Rondale Moore30.110.00.000.003.1
Zay Jones43.211.4-0.030.862.9
Marquez Valdes-Scantling46.513.50.082.182.8
Donovan Peoples-Jones51.813.4-0.040.402.8
Gabriel Davis34.010.4-0.041.902.7
DeVante Parker50.712.70.060.912.6
Corey Davis46.212.90.000.002.6
D.J. Moore55.916.7-0.06-1.282.4
Nick Westbrook-Ikhine55.514.60.000.852.4
Nelson Agholor46.89.90.04-0.281.9
Marvin Jones Jr.52.514.30.000.571.8
Allen Lazard47.312.4-0.024.631.8
Darnell Mooney77.318.70.000.001.7
Parris Campbell62.214.30.050.301.2
Keenan Allen59.917.7-0.050.901.1
Diontae Johnson60.019.8-0.17-2.290.7
Jauan Jennings43.811.1-0.223.190.6
Allen Robinson II51.99.1-0.112.750.4
Adam Thielen54.018.30.000.340.3
Sterling Shepard41.89.20.01-1.050.2
Byron Pringle35.07.00.000.000.1
A.J. Green51.88.7-0.044.820.0
George Pickens40.74.9-0.042.200.0
Jalen Tolbert42.13.3-0.032.000.0
Drake London40.35.80.001.800.0
Alec Pierce37.62.00.020.800.0
Kyle Philips40.44.3-0.090.600.0
Michael Thomas40.92.1-0.030.400.0
Jahan Dotson38.74.6-0.03-0.600.0
Chris Olave40.92.00.02-0.600.0
Olamide Zaccheaus39.910.70.00-1.58-0.1
JuJu Smith-Schuster48.111.20.001.53-0.4
Nico Collins40.711.10.001.16-0.6
Curtis Samuel21.25.10.03-0.40-0.7
Jerry Jeudy44.811.50.030.79-0.8
Devin Duvernay34.84.80.04-1.94-0.9
Jarvis Landry52.311.2-0.07-0.42-1.0
K.J. Hamler33.35.40.000.00-1.0
Van Jefferson54.111.30.000.00-1.2
Chase Claypool71.419.60.001.99-1.4
Equanimeous St. Brown32.64.40.000.00-1.8
Noah Brown25.95.90.000.00-2.0
Courtland Sutton55.013.3-0.072.86-2.1
Marquise Brown82.920.60.000.00-2.2
Laviska Shenault Jr.46.311.9-0.100.71-2.2
Josh Palmer31.08.10.000.83-2.6
D’Wayne Eskridge26.55.60.00-0.48-2.7
Bryan Edwards48.712.30.000.56-2.8
Sammy Watkins33.07.70.13-0.35-2.8
Robbie Anderson57.112.90.000.75-3.2
K.J. Osborn44.911.60.00-0.27-4.0
Rashod Bateman46.09.00.000.55-4.6
Mack Hollins28.47.6-0.031.40-4.9
Quez Watkins44.614.00.023.22-4.9

*Thanks to our friends at PFF for the data

Legend

  • Snaps: estimated total dropback snaps a WR will play in the upcoming matchup
  • Wt.ed Net PPRR: “Weighted Net Fantasy Points/Route Run”. Simply this is the net value of a WR’s PPRR average vs the DB’s PPRR given up, weighted according to each DB a WR is expected to play.
    Example:
    • Say Davante Adams averages 2.0 points/route run
      • DB1 (Adams expected to face 50% of snaps) gives up 3.0 points/route run
      • DB2 (Adams expected to face 30% of snaps) gives up 4.0 points/route run
      • DB3 (Adams expected to face 20% of snaps) gives up 1.0 points/route run

This first model would predict Adams to produce 2.45 points/route run (Adams 2.0 vs. aggregate defenders expected to face averages weighted to 2.9 = 2.45)

  • *40 Adv: “40 Yard Dash Advantage” (weighted difference between WR 40 time and DB’sexpected to face)
  • *HT Adv: “Height Advantage” (same as above, but with height)
  • nPFFwted Total: “Net PFF weighted Total Advantage”. Our core model, similar to the Wt.ed Net PPRR above, compares the PFF grade between WR and likely DB, weighted by expected snaps he’ll see each respective DB

*Not all WRs and DBs have 40 times, and/or height measurements. When this occurs with ONE party, the model ignores the opposing player (i.e. you need a WR and DB with a 40 time for this datapoint to populate)

Matchups to Target

  • Christian Kirk and Tyler Boyd seem interesting for longshot, possibly DFS spot starts (however given Kirk’s new team, its a tad risky)
  • There are a few blue-chip WRs with great matchups, notably Davante Adams and Cooper Kupp having great snap-weighted net PFF Grade advantages

Christian Kirk, the $72-million dollar man, opens up with one of our best matchups predicted for Week 1 WRs. The model predicts about 78% of his snaps to go against Benjamin St. Juste who had a 53.2 Defensive PFF Grade Last season compared to Kirk’s 73 grade.

Tyler Boyd, the most forgotten fantasy-relevant WR on the Bengals, not only has one of our model’s top 3 predicted advantages over expected this week, but “checks all the boxes”. Beyond having 72.6 to 58.1 PFF Grade advantage over his (very highly likely foe, as both players spend over 90% of their snaps in the slot) opponent: Arthur Maulet, Boyd also boasts a speed advantage (4.58 40 yard dash vs. 4.62) AND has 4 inches on the slot corner.

Both Cooper Kupp and Davante Adams both score extremely high on their net PFF values (big shocker there), but also score as good as any WR this week in the net yards per route run, weighted to their most likely cover man. This will be Taron Johnson for Kupp (estimate about 42 snaps) and about 35% of Bryce Callahan, who had a deceptively low grade last season coming off an injury.

Matchups to Avoid

  • There’s plenty of “bubble” guys that are likely best to wait until later in the year to take a flier on them, but if you are looking for deep sleepers, WRs Sammy Watkins and Robbie Anderson could be decent options to suprise
  • When considering the most fantasy relevant WRs, we are fading Rashod Bateman, Marquise Brown and Courtland Sutton hard this week. This is particularly true for the “very sticky” metric, outside of the model that shows both Sutton and Bateman failed to create separation on their routes over the course of 2021

Deeper Dive

Although INDIVIDUAL DB performance may be tough to predict, one thing that’s much more consistent is what coverage a defense tends to use. Now, to be clear, if we are planning to use coverage tendencies to try and predict WR outcomes on a week-to-week basis, the granularity may actually be our enemy. Instead, what I have found to be a more predictive split is to look at the following four pass defenses, broken down into these segments:

  1. Defense: Blitz, with Zone Coverage behind
  2. Defense: NOT Blitz with Zone Coverage behind
  3. Defense: Blitz with Man Coverage behind
  4. Defense: NOT Blitz with Man Coverage behind

*And then of course our secondary model compares WRs relative performance in these respective circumstances (think: who’s the goto WR when a QB is pressured). 

*Our secondary model captures a WR’s respective performance in these situations (from 2021), and how often a defense played said coverage. We take the Zone vs Man / Blitz vs. NOT Blitz Grid, apply it to the expected distribution of opposing defenses deployed and attempt to glean some additional insight on performance. 

Here is how the model works out, INCLUDING the first PFF net Grade model to the left. Note the 6 column on the right are self-explanatory, with the respective numbers representing percentage target share increase (vs. average) given the situation. The column furthest to the right simply aggregates the TWO models together:

SnapsWt.ed Net pprr40 Adv.HT Adv.nPFFwted TotalMan BlitzMan NO blitzZone BlitzZone no BlitznCOVTYPECOV + DB
Christian Kirk46.916.3-0.01-0.1012.10.0-0.40.00.90.512.6
Keenan Allen59.917.7-0.050.901.111.80.0-0.4-0.111.312.4
Amari Cooper52.617.3-0.010.006.30.45.6-0.1-1.04.911.2
Cooper Kupp62.426.4-0.132.3111.20.9-0.10.1-1.1-0.310.9
Tyler Boyd56.416.80.033.6611.4-1.20.5-0.30.4-0.610.8
Braxton Berrios29.89.70.000.008.80.2-0.8-0.32.21.210.0
Hunter Renfrow51.218.1-0.02-0.5110.1-0.1-0.60.5-0.3-0.49.7
Randall Cobb38.311.40.12-1.519.3-0.1-0.20.40.10.19.4
Mike Williams54.417.70.000.696.03.30.1-0.40.03.09.0
DeVonta Smith57.721.90.000.007.9-0.10.1-0.50.60.38.2
A.J. Brown51.924.60.000.037.60.6-0.20.4-0.30.58.0
Davante Adams58.225.1-0.040.008.20.40.3-0.7-0.4-0.37.9
Deebo Samuel55.720.50.00-0.637.4-0.10.00.00.10.07.4
Tee Higgins53.918.30.000.005.13.0-0.4-0.1-0.52.17.2
Elijah Moore39.412.30.000.004.60.0-1.01.41.41.86.4
Tyler Lockett54.319.10.00-0.146.4-0.10.2-0.60.2-0.36.1
Chris Godwin52.218.6-0.031.947.00.4-0.20.0-1.2-1.16.0
Kenny Golladay42.710.1-0.012.385.60.90.1-0.4-0.20.35.9
Justin Jefferson56.021.00.030.635.70.7-0.50.1-0.20.15.9
Kadarius Toney31.29.30.00-0.313.41.3-0.61.8-0.52.05.4
Michael Pittman Jr.56.716.5-0.012.274.21.3-0.10.2-0.31.15.2
Ja’Marr Chase59.022.30.000.005.4-0.30.00.3-0.6-0.64.8
Stefon Diggs56.219.00.00-0.203.6-0.11.3-0.20.01.04.6
Brandon Aiyuk56.215.5-0.011.334.6-0.10.5-0.50.10.04.6
Brandin Cooks51.119.60.08-2.294.50.10.3-0.2-0.3-0.14.4
Robert Woods58.917.4-0.051.305.1-2.10.00.70.7-0.84.4
Russell Gage49.817.50.00-0.444.8-0.10.5-0.6-0.6-0.74.1
Terry McLaurin55.117.20.010.004.90.3-1.50.7-0.4-1.03.9
Marvin Jones Jr.52.514.30.000.571.8-0.11.6-0.20.01.43.1
Zay Jones43.211.4-0.030.862.90.4-0.1-0.30.10.03.0
Marquez Valdes-Scantling46.513.50.082.182.80.30.50.0-0.70.22.9
Parris Campbell62.214.30.050.301.21.6-0.30.20.01.42.7
D.J. Moore55.916.7-0.06-1.282.40.20.10.2-0.20.22.6
Allen Lazard47.312.4-0.024.631.8-0.41.20.1-0.10.72.5
Mecole Hardman51.015.80.11-1.094.5-0.4-2.20.30.2-2.12.4
Marquise Brown82.920.60.000.00-2.2-0.2-0.20.24.84.62.4
Gabriel Davis34.010.4-0.041.902.70.9-1.0-0.30.1-0.32.4
Darnell Mooney77.318.70.000.001.70.60.1-0.30.20.62.3
D.K. Metcalf50.918.50.032.197.60.40.2-3.4-2.6-5.42.2
Chris Moore25.59.7-0.02-0.183.2-0.81.0-0.7-0.5-1.02.2
Nick Westbrook-Ikhine55.514.60.000.852.40.0-0.40.3-0.1-0.22.2
Donovan Peoples-Jones51.813.4-0.040.402.80.30.4-0.8-1.0-1.01.7
Jakobi Meyers55.015.2-0.010.233.40.50.2-2.0-0.4-1.71.7
Nelson Agholor46.89.90.04-0.281.9-0.1-1.10.70.1-0.41.5
Jauan Jennings43.811.1-0.223.190.6-0.50.11.6-0.50.81.4
Jerry Jeudy44.811.50.030.79-0.83.0-1.00.00.12.01.2
Mike Evans55.319.5-0.043.634.40.20.2-2.2-1.6-3.31.1
Sterling Shepard41.89.20.01-1.050.21.40.0-0.2-0.40.81.0
Diontae Johnson60.019.8-0.17-2.290.70.4-0.50.10.00.00.7
Jarvis Landry52.311.2-0.07-0.42-1.0-0.3-0.30.61.71.60.7
Adam Thielen54.018.30.000.340.3-0.70.50.4-0.10.10.4
Allen Robinson II51.99.1-0.112.750.4-0.1-0.10.3-0.3-0.30.1
Olamide Zaccheaus39.910.70.00-1.58-0.1-0.10.00.10.00.10.0
A.J. Green51.88.7-0.044.820.0-0.20.30.5-0.7-0.1-0.1
DeVante Parker50.712.70.060.912.60.10.1-2.8-0.2-2.7-0.1
Corey Davis46.212.90.000.002.60.60.2-2.7-1.0-2.9-0.3
Courtland Sutton55.013.3-0.072.86-2.10.81.2-0.40.01.7-0.4
Nico Collins40.711.10.001.16-0.6-0.8-0.71.20.40.0-0.6
Devin Duvernay34.84.80.04-1.94-0.9-0.30.00.30.10.1-0.8
Chase Claypool71.419.60.001.99-1.40.41.0-0.7-0.30.3-1.1
Laviska Shenault Jr.46.311.9-0.100.71-2.2-0.31.20.2-0.20.9-1.4
Van Jefferson54.111.30.000.00-1.20.3-0.20.2-0.5-0.2-1.4
Equanimeous St. Brown32.64.40.000.00-1.80.7-1.92.0-0.8-0.1-1.9
JuJu Smith-Schuster48.111.20.001.53-0.40.0-0.6-1.70.3-1.9-2.3
Bryan Edwards48.712.30.000.56-2.80.5-0.3-0.20.0-0.1-2.9
Robbie Anderson57.112.90.000.75-3.20.4-0.30.00.10.2-3.0
Rashod Bateman46.09.00.000.55-4.60.30.0-0.41.41.4-3.2
James Proche24.05.60.000.0011.4-0.61.3-0.8-14.9-15.1-3.6
K.J. Osborn44.911.60.00-0.27-4.0-0.4-0.40.80.00.1-4.0
Quez Watkins44.614.00.023.22-4.90.10.10.3-0.7-0.3-5.2
CeeDee Lamb54.016.7-0.042.563.30.2-9.60.2-0.1-9.3-6.0
Mack Hollins28.47.6-0.031.40-4.90.00.1-1.80.0-1.8-6.7
Josh Palmer31.08.10.000.83-2.6-12.70.01.1-0.2-11.8-14.4
Sammy Watkins33.07.70.13-0.35-2.8-0.81.0-0.1-15.8-15.7-18.5
Alec Pierce37.62.00.020.800.0
Byron Pringle35.07.00.000.000.1
Chris Olave40.92.00.02-0.600.0
Curtis Samuel21.25.10.03-0.40-0.7
D’Wayne Eskridge26.55.60.00-0.48-2.7
Demetric Felton23.410.50.00-1.1521.9
Drake London40.35.80.001.800.0
George Pickens40.74.9-0.042.200.0
Isaiah McKenzie23.46.80.10-3.034.0
Jalen Tolbert42.13.3-0.032.000.0
Jahan Dotson38.74.6-0.03-0.600.0
K.J. Hamler33.35.40.000.00-1.0
Kyle Philips40.44.3-0.090.600.0
Michael Thomas40.92.1-0.030.400.0
Noah Brown25.95.90.000.00-2.0
Rondale Moore30.110.00.000.003.1

*Similar to the first chart, any rookie will not be included in this graph and/or any player with no snaps in a given metric will result in a ____
**Thanks to our friends at Sports Info Solutions for the data

The additions to the table are based exclusively in net target share per circumstance (vs. average). For example, the “5.6” for Amari Cooper under the “Man NO Blitz” column represents how much more of a target share Cooper demands vs. his average (6% points) OVER the expected RANK of a defense deploying said (Man NO Blitz) coverage (most in the NFL). 

In laymen’s terms, the model expects Cooper to gain more targets than usual given the larger relative share he earns when a defense plays man without blitzing, and how often his opponent will deploy such a tactic.

*Again, we are making big leaps in assumptions here, especially when it comes to a WR that switched teams and/or an opposing defense with a new DC (buyer beware during the first few weeks before the model populates with fresh data)

What this tells us:

  • We still feel solid about Kirk, coming in at 1st overall with the aggregate model, however with a change of team its tough to be sure
  • Tyler Boyd also remains atop given the lack of blitzing the Bengals are expected to see
  • Cooper Kupp also drops a bit but is hoping to see his favorite (relative) combo: Man Blitz
  • Although the first model did NOT like Rashod Bateman, the second likes the amount of Zone NO Blitz he will likely see
  • We absolutely should reconsider our fade on Hollywood Brown, as although he has a negative PFF matchup, he’s likely to see a large does of Zone NO Blitz, which he generated almost a 5% higher target share given that setup (albeit with a different team)

Again, I should note, this secondary model should be used as a way to “confirm our priors” based on the original, more predictive model based on net PFF grades. 

All in all, based on our models, if you want the easier answer:

Start

  • Christian Kirk
  • Keenan Allen
  • Amari Cooper
  • Cooper Kupp
  • Tyler Boyd

Sit

  • CeeDee Lamb
  • Rashod Bateman
  • Robbie Anderson
  • JuJu Smith-Schuster
  • Chase Claypool

*Mind you, especially for early weeks, if a WR is playing a NEW DC, you can throw these numbers out the window. Additionally, this model does NOT consider “coverage elasticity”, or how stringent a defensive’s DECISION to deploy XYZ coverage.

I hope this data helps you build a winning lineup. Our models will only improve throughout the season, but we hope to see you back next week!

Best of luck in week 1.

Leave a Reply